Intersecting Families of Sets and the Topology of Cones in Economics

نویسنده

  • G. CHICHILNISKY
چکیده

Two classical problems in economics, the existence of a market equilibrium and the existence of social choice functions, are formalized here by the properties of a family of cones associated with the economy. It was recently established that a necessary and sufficient condition for solving the former is the nonempty intersection of the family of cones, and one such condition for solving the latter is the acyclicity of the unions of its subfamilies. We show an unexpected but clear connection between the two problems by establishing a duality property of the homology groups of the nerve defined by the family of cones. In particular, we prove that the intersection of the family of cones is nonempty if and only if every subfamily has acyclic unions, thus identifying the two conditions that solve the two economic problems. In addition to their applications to economics, the results are shown to extend significantly several classical theorems, providing unified and simple proofs: Helly’s theorem, Caratheodory’s representation theorem, the Knaster-Kuratowski-Marzukiewicz theorem, Brouwer’s fixed point theorem, and Leray’s theorem on acyclic covers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero sets in pointfree topology and strongly $z$-ideals

In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...

متن کامل

A kind of fuzzy upper topology on L-preordered sets

Considering a commutative unital quantale L as the truth value table and using the tool of L-generalized convergence structures of stratified L-filters, this paper introduces a kind of fuzzy upper topology, called fuzzy S-upper topology, on L-preordered sets. It is shown that every fuzzy join-preserving L-subset is open in this topology. When L is a complete Heyting algebra, for every completel...

متن کامل

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

Some results on maximal open sets

In this paper, the notion of maximal m-open set is introduced and itsproperties are investigated. Some results about existence of maximal m-open setsare given. Moreover, the relations between maximal m-open sets in an m-spaceand maximal open sets in the corresponding generated topology are considered.Our results are supported by examples and counterexamples.

متن کامل

TOPOLOGICAL SIMILARITY OF L-RELATIONS

$L$-fuzzy rough sets are extensions of the classical rough sets by relaxing theequivalence relations to $L$-relations. The topological structures induced by$L$-fuzzy rough sets have opened up the way for applications of topological factsand methods in granular computing. In this paper, we firstly prove thateach arbitrary $L$-relation can generate an Alexandrov $L$-topology.Based on this fact, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993